A 0.5-Approximation Algorithm for MAX DICUT with Given Sizes of Parts

نویسندگان

  • Alexander A. Ageev
  • Refael Hassin
  • Maxim Sviridenko
چکیده

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An 0.5-Approximation Algorithm for MAX DICUT with Given Sizes of Parts

Given a directed graph G and an edge weight function w : E(G) → R+, the maximum directed cut problem (max dicut) is that of finding a directed cut δ(X) with maximum total weight. In this paper we consider a version of max dicut — max dicut with given sizes of parts or max dicut with gsp — whose instance is that of max dicut plus a positive integer p, and it is required to find a directed cut δ(...

متن کامل

New Approximation Algorithms for Max 2sat and Max Dicut

We propose a 0.935-approximation algorithm for MAX 2SAT and a 0.863-approximation algorithm for MAX DICUT. The approximation ratios improve upon the recent results of Zwick, which are equal to 0.93109 and 0.8596434254 respectively. Also proposed are derandomized versions of the same approximation ratios. We note that these approximation ratios are obtained by numerical computation rather than t...

متن کامل

Aproximating the Value of Two Prover Proof Systems, With Applications to MAX 2SAT and MAX DICUT

It is well known that two prover proof systems are a convenient tool for establishing hardness of approximation results. In this paper, we show that two prover proof systems are also convenient starting points for establishing easiness of approximation results. Our approach combines the Feige-Lovv asz (STOC92) semideenite programming relaxation of one-round two-prover proof systems, together wi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Discrete Math.

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2001